Hierarchical MOF-xerogel monolith composites from embedding MIL-100(Fe,Cr) and MIL-101(Cr) in resorcinol-formaldehyde xerogels for water adsorption applications
نویسندگان
چکیده
منابع مشابه
Programming MIL-101Cr for selective and enhanced CO2 adsorption at low pressure by postsynthetic amine functionalization.
MIL-101Cr fully or partially (p) postsynthetically modified with nitro (-NO2) or amino (-NH2) groups was shown to be a robust, water stable, selective and enhanced carbon dioxide (CO2) adsorption material with the amine-functionality. The highly microporous amine-modified frameworks (up to 1.6 cm(3) g(-1) total pore volume) exhibit excellent thermal stability (>300 °C) with BET surface areas up...
متن کاملMOF derived composites for cathode protection: coatings of LiCoO2 from UiO-66 and MIL-53 as ultra-stable cathodes.
A mechanochemical synthetic method of preparing LiCoO2 coated by MOF-derived metal oxide composites is introduced. Mono-dispersed ZrO2 and Al2O3 are applied as protection layers. These composites show 148 mA h g(-1) at a current density of 2325 mA g(-1) and excellent thermal stability (55 °C).
متن کاملThe Preparation of Porous Sol-Gel Silica with Metal Organic Framework MIL-101(Cr) by Microwave-Assisted Hydrothermal Method for Adsorption Chillers
Abstract: Metal organic framework (MOF) of MIL-101(Cr)-Silica (SiO₂) composites with highly mesoporous and uniform dispersions were synthesized by a microwave-assisted hydrothermal method followed by the sol-gel technique. Water vapor adsorption experiments were conducted on the MIL-101(Cr)-SiO₂ composites for industrial adsorption chiller applications. The effects of MIL-101(Cr)-SiO₂ mixing ra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Microporous and Mesoporous Materials
سال: 2015
ISSN: 1387-1811
DOI: 10.1016/j.micromeso.2015.05.017